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Filip Kaliszan
• studied computer science at Stanford - systems in 

undergrad, then Master’s in human computer interaction;  

• learned to build products at: Stanford, Adobe, 
CourseRank, Chegg, and Guidebook  

• work part-time at Life360; advise start-ups; getting ready 
for my next project 

• photography, travel, skiing, and (currently) re-building a 
house…



CourseRank
• class ratings & reviews website (…CourseCycle, TreeViews) 
• started in 2007 in CS 194: Software Project 
• 2010: >100k students @ 30 schools, ~30k reviews 
• 2010: Chegg acquired CourseRank & integrated tech 
• late 2014: Chegg stopped supporting courserank.com

http://courserank.com






https://www.youtube.com/watch?v=rBEUXEFAo_g



Why focus on recommendations?

// answer in class 

• personalized experience for users 
• helping you make your decision / choice 
• classes you haven’t thought of before 
• what have people with similar majors taken before? 



Why focus on recommendations?

• interesting research (Netflix Prize; rich data set)


• better user experience:

• helping students discover classes

• more engaging

• more time on site

• easier way to add-classes


• added-classes result in more ratings / reviews



CourseRank Data
Students ~6,500
(SuID, Name, Age, GPA, Major…)

CourseID DeptID Num Title Descr

1 CS 106A Pro.. Intro.

2 CS 107 Com… Funda

3 MATH 51 Calc… Multi…

4 CME 106 Stati… Appli..

Courses ~7,500
(CourseID, DeptID, Num, Title, Description…)

SuID Name Age GPA Major

1 Fred 19 3.8 CS

2 Jenn 18

3 Matt 20 3.2 MATH

4 Alice 22 3.4 CS

Course History >100,000
(SuID, CourseID, Year, Term, Grade, Rating…)

SuID CourseID Year Term Grade Rating

1 2 2015 Winter A- 5

Fred took CS 107 in 
Winter 2015, got an 
A-, and rated it 5 stars.



How would you generate recommendations?

// answer in class 

• find similar students and see what classes they took 
• follow natural progression of a major 
• find classes similar to ones rated highly 
• find common combinations between classes 
• figure out major / university requirements 
• popularity





Three Approaches

1. Collaborative Filtering Recommender 
2. Content Filtering Recommender 
3. Constraint Based Recommender



1. Collaborative Filtering



Collaborative Filtering

“…collaborative filtering is a method of making 
automatic predictions (filtering) about the 
interests of a user by collecting preferences or 
taste information from many users 
(collaborating)”

Wikipedia, Collaborative Filtering, September 30, 2015  
https://en.wikipedia.org/wiki/Collaborative_filtering

https://en.wikipedia.org/wiki/Collaborative_filtering


Collaborative Filtering

Fred other students
- 19 years old 
- 3.8 GPA 
- CS 106A 
- CS 107

compare



Collaborative Filtering

Fred other students
- 19 years old 
- 3.8 GPA 
- CS 106A 
- CS 107

compare

students
similar to
Fred

CS 106A
CS 107  
MATH 51
CS 108
IHUM 57

recommend



Collaborative Filtering

How to compute similarity…?

SuID Name Age Score

2 Jenn 18 1

3 Matt 20 1

4 Alice 22 3

Students Age Difference

Fred
- 19 years old 
- 3.8 GPA 
- CS 106A 
- CS 107



Collaborative Filtering

SuID Name Score

2 Jenn 0.67

3 Matt 0.33

4 Alice 0.50

Jaccard Similarity - statistic for comparing 
similarity of sets (in this case sets of courses)

Jaccard Sim(Fred, Jenn) = 
courses taken by Fred and Jenn
courses taken by Fred or Jenn

Fred
CS 106A 
CS 107

Jenn
CS 106A 
CS 107 
MATH 51

=
2
3

= 0.67



Collaborative Filtering
How would you optimize it? 

// answer in class 

• similarity: major, gpa,  
• factor in ratings they gave 
• sequence 



2. Content Filtering



Content Filtering

“…Content-based filtering methods are based 
on a description of the item and a profile of the 
user’s preference”

Wikipedia, Recommender System, September 30, 2015  
https://en.wikipedia.org/wiki/Recommender_system#Content-based_filtering 

https://en.wikipedia.org/wiki/Recommender_system#Content-based_filtering


Content Filtering

Fred
- 3.8 GPA 
- CS 106A 
- CS 107

Profile / Preferences

• 19 years old / sophomore: intro classes 
• CS 106A and 107: computer science
• CS: part of school of engineering 

we can also learn more about his specific 
classes…



Content Filtering

CourseID DeptID Num Title Descr

1 CS 106A Pro.. Intro.

2 CS 107 Com… Funda

3 MATH 51 Calc… Multi…

4 CME 106 Stati… Appli..

Courses ~7,500
(CourseID, DeptID, Num, Title, Description)

CS 106A: Programming 
Methodology
Introduction to the engineering of 
computer applications emphasizing 
modern software engineering principles: 
object-oriented design, decomposition, 
encapsulation, abstraction, and testing. 
Uses the Java programming language. 
Emphasis is on good programming style 
and the built-in facilities of the Java 
language. No prior programming 
experience required. Summer quarter 
enrollment is limited. Priority given to 
Stanford students. 



Content Filtering
CS 106A: Programming 
Methodology
Introduction to the engineering of 
computer applications emphasizing 
modern software engineering principles: 
object-oriented design, decomposition, 
encapsulation, abstraction, and testing. 
Uses the Java programming language. 
Emphasis is on good programming style 
and the built-in facilities of the Java 
language. No prior programming 
experience required. Summer quarter 
enrollment is limited. Priority given to 
Stanford students. 

prefix identifies 
department



Content Filtering
CS 106A: Programming 
Methodology
Introduction to the engineering of 
computer applications emphasizing 
modern software engineering principles: 
object-oriented design, decomposition, 
encapsulation, abstraction, and testing. 
Uses the Java programming language. 
Emphasis is on good programming style 
and the built-in facilities of the Java 
language. No prior programming 
experience required. Summer quarter 
enrollment is limited. Priority given to 
Stanford students. 

prefix identifies 
department

course numbers 
often sequential 

200- and 300- level 
are grad courses



Content Filtering
prefix identifies 

department

course numbers 
often sequential 

200- and 300- level 
are grad courses

CS 106A: Programming 
Methodology
Introduction to the engineering of 
computer applications emphasizing 
modern software engineering principles: 
object-oriented design, decomposition, 
encapsulation, abstraction, and testing. 
Uses the Java programming language. 
Emphasis is on good programming style 
and the built-in facilities of the Java 
language. No prior programming 
experience required. Summer quarter 
enrollment is limited. Priority given to 
Stanford students. 

We can also identify 
key words in the text 
corpus (eg. TF-IDF) 

** example highlights not based on real text analysis **

https://en.wikipedia.org/wiki/Tf%E2%80%93idf


Content Filtering

Fred
- 3.8 GPA 
- CS 106A 
- CS 107

Profile / Preferences

• 19 years old / sophomore: intro classes 
• CS 106A and 107: computer science
• CS: part of school of engineering 

• programming, java, abstraction, 
engineering, object-oriented



Content Filtering
Search Courses For:

• “CS” department 

• 100 number level  

• key terms: programming, 
java, abstraction, 
engineering, object-oriented  

CS 193P: iPhone and 
iPad Programming
Tools and APIs required to build 
applications for the iPhone and iPad 
platforms using the iOS SDK. User 
interface design for mobile devices and 
unique user interactions using multi-touch 
technologies. Object-oriented design 
using model-view-controller paradigm, 
memory management, Swift programming 
language. Other topics include: object-
oriented database API, animation, mobile 
device power management, multi-
threading, networking and performance 
considerations.



Content Filtering
Search Courses For:

• “CS” department 

• 100 number level  

• key terms: programming, 
java, abstraction, 
engineering, object-oriented  

CS 193P: iPhone and 
iPad Programming
Tools and APIs required to build 
applications for the iPhone and iPad 
platforms using the iOS SDK. User 
interface design for mobile devices and 
unique user interactions using multi-touch 
technologies. Object-oriented design 
using model-view-controller paradigm, 
memory management, Swift programming 
language. Other topics include: object-
oriented database API, animation, mobile 
device power management, multi-
threading, networking and performance 
considerations.



3. Constraint  Based



Constraint Based

Our constrained-based filtering approach was 
based on following well-defined selection 
constraints specific to our application: namely 
departmental and university-wide graduation 
requirements. 



Constraint Based

Fred
- 3.8 GPA 
- CS 106A 
- CS 107

Major Undefined: 

•recommend GERs 
•recommend courses 

common to most majors 

•…then major requirements



Constraint Based
Is this difficult? Why or why not? 

// answer in class 

• hard to tell if they will major 
• people can change majors 
• missing data in course history; might recommend things 

they’ve already taken  
• “i took it button”  

• classes outside of they major 
• select different tracks 
• planning out requirements over time 
• extra curricular (lots of options) 
• define the complete set of possible rules 



Pros & Cons
Think about each approach in context of scenarios with:  

• few students on the system 
• sparse course data (missing titles or descriptions) 
• many new courses introduced each year 
• frequently changing graduation requirements  
• poorly documented (or qualitative) major requirements 
• self-defined majors 
 
What’s missing from each approach? What are its pitfalls? 
Which is the best one?



How do you evaluate recommendations?

// answer in class 

• users taking the classes 
• what if they were going to take the class anyway 

• have they liked the class (rating) 
• click-through rate



How do you evaluate recommendations?

Personalization metrics at Netflix

• RMSE (predicted rating vs. actual rating) 
• % customers at 6 weeks with ≥ 50 ratings 
• % customers with ≥ 15 minutes streamed  
• % customers with ≥ 6 queue adds in a month 

(in DVD days)



Real World Applications
Chegg acquired CourseRank in 2010, forcing growth:

• 30 to 1,500 universities 
• 100k to >3mln listed courses 
• 100k to “millions” of students

Course ratings & reviews critical to user engagement:
• recommendations: connect students to courses 
• clicking courses much easier than typing 
• real results in ~18 months: 

• 500k to millions of course ratings 
• 30k to >1mln written reviews



Filip Kaliszan

How to reach me?

filip.kaliszan@gmail.com 
(650) 796 6302 

https://www.facebook.com/filip.kaliszan 
flickr.com/kaliszan 
 

mailto:filip.kaliszan@gmail.com

