
Recommendation
Systems  

 

+ data privacy, and
startup stories

Filip Kaliszan
Stanford University

October 1, 2015

Filip Kaliszan
• studied computer science at Stanford - systems in

undergrad, then Master’s in human computer interaction;  

• learned to build products at: Stanford, Adobe,
CourseRank, Chegg, and Guidebook  

• work part-time at Life360; advise start-ups; getting ready
for my next project 

• photography, travel, skiing, and (currently) re-building a
house…

CourseRank
• class ratings & reviews website (…CourseCycle, TreeViews)
• started in 2007 in CS 194: Software Project
• 2010: >100k students @ 30 schools, ~30k reviews
• 2010: Chegg acquired CourseRank & integrated tech
• late 2014: Chegg stopped supporting courserank.com

http://courserank.com

https://www.youtube.com/watch?v=rBEUXEFAo_g

Why focus on recommendations?

// answer in class

• personalized experience for users
• helping you make your decision / choice
• classes you haven’t thought of before
• what have people with similar majors taken before?

Why focus on recommendations?

• interesting research (Netflix Prize; rich data set)

• better user experience:

• helping students discover classes

• more engaging

• more time on site

• easier way to add-classes

• added-classes result in more ratings / reviews

CourseRank Data
Students ~6,500
(SuID, Name, Age, GPA, Major…)

CourseID DeptID Num Title Descr

1 CS 106A Pro.. Intro.

2 CS 107 Com… Funda

3 MATH 51 Calc… Multi…

4 CME 106 Stati… Appli..

Courses ~7,500
(CourseID, DeptID, Num, Title, Description…)

SuID Name Age GPA Major

1 Fred 19 3.8 CS

2 Jenn 18

3 Matt 20 3.2 MATH

4 Alice 22 3.4 CS

Course History >100,000
(SuID, CourseID, Year, Term, Grade, Rating…)

SuID CourseID Year Term Grade Rating

1 2 2015 Winter A- 5

Fred took CS 107 in
Winter 2015, got an
A-, and rated it 5 stars.

How would you generate recommendations?

// answer in class

• find similar students and see what classes they took
• follow natural progression of a major
• find classes similar to ones rated highly
• find common combinations between classes
• figure out major / university requirements
• popularity

Three Approaches

1. Collaborative Filtering Recommender
2. Content Filtering Recommender
3. Constraint Based Recommender

1. Collaborative Filtering

Collaborative Filtering

“…collaborative filtering is a method of making
automatic predictions (filtering) about the
interests of a user by collecting preferences or
taste information from many users
(collaborating)”

Wikipedia, Collaborative Filtering, September 30, 2015  
https://en.wikipedia.org/wiki/Collaborative_filtering

https://en.wikipedia.org/wiki/Collaborative_filtering

Collaborative Filtering

Fred other students
- 19 years old 
- 3.8 GPA 
- CS 106A
- CS 107

compare

Collaborative Filtering

Fred other students
- 19 years old 
- 3.8 GPA 
- CS 106A
- CS 107

compare

students
similar to
Fred

CS 106A
CS 107  
MATH 51
CS 108
IHUM 57

recommend

Collaborative Filtering

How to compute similarity…?

SuID Name Age Score

2 Jenn 18 1

3 Matt 20 1

4 Alice 22 3

Students Age Difference

Fred
- 19 years old 
- 3.8 GPA 
- CS 106A
- CS 107

Collaborative Filtering

SuID Name Score

2 Jenn 0.67

3 Matt 0.33

4 Alice 0.50

Jaccard Similarity - statistic for comparing
similarity of sets (in this case sets of courses)

Jaccard Sim(Fred, Jenn) =
courses taken by Fred and Jenn
courses taken by Fred or Jenn

Fred
CS 106A
CS 107

Jenn
CS 106A
CS 107
MATH 51

=
2
3

= 0.67

Collaborative Filtering
How would you optimize it?

// answer in class

• similarity: major, gpa,
• factor in ratings they gave
• sequence

2. Content Filtering

Content Filtering

“…Content-based filtering methods are based
on a description of the item and a profile of the
user’s preference”

Wikipedia, Recommender System, September 30, 2015  
https://en.wikipedia.org/wiki/Recommender_system#Content-based_filtering

https://en.wikipedia.org/wiki/Recommender_system#Content-based_filtering

Content Filtering

Fred
- 3.8 GPA 
- CS 106A
- CS 107

Profile / Preferences

• 19 years old / sophomore: intro classes
• CS 106A and 107: computer science
• CS: part of school of engineering

we can also learn more about his specific
classes…

Content Filtering

CourseID DeptID Num Title Descr

1 CS 106A Pro.. Intro.

2 CS 107 Com… Funda

3 MATH 51 Calc… Multi…

4 CME 106 Stati… Appli..

Courses ~7,500
(CourseID, DeptID, Num, Title, Description)

CS 106A: Programming
Methodology
Introduction to the engineering of
computer applications emphasizing
modern software engineering principles:
object-oriented design, decomposition,
encapsulation, abstraction, and testing.
Uses the Java programming language.
Emphasis is on good programming style
and the built-in facilities of the Java
language. No prior programming
experience required. Summer quarter
enrollment is limited. Priority given to
Stanford students.

Content Filtering
CS 106A: Programming
Methodology
Introduction to the engineering of
computer applications emphasizing
modern software engineering principles:
object-oriented design, decomposition,
encapsulation, abstraction, and testing.
Uses the Java programming language.
Emphasis is on good programming style
and the built-in facilities of the Java
language. No prior programming
experience required. Summer quarter
enrollment is limited. Priority given to
Stanford students.

prefix identifies
department

Content Filtering
CS 106A: Programming
Methodology
Introduction to the engineering of
computer applications emphasizing
modern software engineering principles:
object-oriented design, decomposition,
encapsulation, abstraction, and testing.
Uses the Java programming language.
Emphasis is on good programming style
and the built-in facilities of the Java
language. No prior programming
experience required. Summer quarter
enrollment is limited. Priority given to
Stanford students.

prefix identifies
department

course numbers
often sequential

200- and 300- level
are grad courses

Content Filtering
prefix identifies

department

course numbers
often sequential

200- and 300- level
are grad courses

CS 106A: Programming
Methodology
Introduction to the engineering of
computer applications emphasizing
modern software engineering principles:
object-oriented design, decomposition,
encapsulation, abstraction, and testing.
Uses the Java programming language.
Emphasis is on good programming style
and the built-in facilities of the Java
language. No prior programming
experience required. Summer quarter
enrollment is limited. Priority given to
Stanford students.

We can also identify
key words in the text
corpus (eg. TF-IDF)

** example highlights not based on real text analysis **

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Content Filtering

Fred
- 3.8 GPA 
- CS 106A
- CS 107

Profile / Preferences

• 19 years old / sophomore: intro classes
• CS 106A and 107: computer science
• CS: part of school of engineering 

• programming, java, abstraction,
engineering, object-oriented

Content Filtering
Search Courses For:

• “CS” department 

• 100 number level  

• key terms: programming,
java, abstraction,
engineering, object-oriented  

CS 193P: iPhone and
iPad Programming
Tools and APIs required to build
applications for the iPhone and iPad
platforms using the iOS SDK. User
interface design for mobile devices and
unique user interactions using multi-touch
technologies. Object-oriented design
using model-view-controller paradigm,
memory management, Swift programming
language. Other topics include: object-
oriented database API, animation, mobile
device power management, multi-
threading, networking and performance
considerations.

Content Filtering
Search Courses For:

• “CS” department 

• 100 number level  

• key terms: programming,
java, abstraction,
engineering, object-oriented  

CS 193P: iPhone and
iPad Programming
Tools and APIs required to build
applications for the iPhone and iPad
platforms using the iOS SDK. User
interface design for mobile devices and
unique user interactions using multi-touch
technologies. Object-oriented design
using model-view-controller paradigm,
memory management, Swift programming
language. Other topics include: object-
oriented database API, animation, mobile
device power management, multi-
threading, networking and performance
considerations.

3. Constraint Based

Constraint Based

Our constrained-based filtering approach was
based on following well-defined selection
constraints specific to our application: namely
departmental and university-wide graduation
requirements.

Constraint Based

Fred
- 3.8 GPA 
- CS 106A
- CS 107

Major Undefined: 

•recommend GERs
•recommend courses

common to most majors

•…then major requirements

Constraint Based
Is this difficult? Why or why not?

// answer in class

• hard to tell if they will major
• people can change majors
• missing data in course history; might recommend things

they’ve already taken
• “i took it button”

• classes outside of they major
• select different tracks
• planning out requirements over time
• extra curricular (lots of options)
• define the complete set of possible rules

Pros & Cons
Think about each approach in context of scenarios with:  

• few students on the system
• sparse course data (missing titles or descriptions)
• many new courses introduced each year
• frequently changing graduation requirements
• poorly documented (or qualitative) major requirements
• self-defined majors
 
What’s missing from each approach? What are its pitfalls?
Which is the best one?

How do you evaluate recommendations?

// answer in class

• users taking the classes
• what if they were going to take the class anyway

• have they liked the class (rating)
• click-through rate

How do you evaluate recommendations?

Personalization metrics at Netflix

• RMSE (predicted rating vs. actual rating)
• % customers at 6 weeks with ≥ 50 ratings
• % customers with ≥ 15 minutes streamed
• % customers with ≥ 6 queue adds in a month

(in DVD days)

Real World Applications
Chegg acquired CourseRank in 2010, forcing growth:

• 30 to 1,500 universities
• 100k to >3mln listed courses
• 100k to “millions” of students

Course ratings & reviews critical to user engagement:
• recommendations: connect students to courses
• clicking courses much easier than typing
• real results in ~18 months:

• 500k to millions of course ratings
• 30k to >1mln written reviews

Filip Kaliszan

How to reach me?

filip.kaliszan@gmail.com
(650) 796 6302

https://www.facebook.com/filip.kaliszan
flickr.com/kaliszan

mailto:filip.kaliszan@gmail.com

